Chemical space exploration guided by deep neural networks
نویسندگان
چکیده
منابع مشابه
Design Space Exploration of FPGA-Based Deep Convolutional Neural Networks
Deep Convolutional Neural Networks (DCNN) have proven to be very effective in many pattern recognition applications, such as image classification and speech recognition. Due to their computational complexity, DCNNs demand implementations that utilize custom hardware accelerators to meet performance and energy-efficiency constraints. Leverages all sources of parallelism in DCNNs, in this paper w...
متن کاملAutonomous Exploration of Mobile Robots through Deep Neural Networks
The exploration problem of mobile robots aims to allow mobile robots to explore an unknown environment. We describe an indoor exploration algorithm for mobile robots using a hierarchical structure that fuses several convolutional neural network layers with the decision-making process. The whole system is trained end to end by taking only visual information (RGB+D information) as input and gener...
متن کاملAn Exploration of Style Transfer Using Deep Neural Networks
Convolutional Neural Networks and Graphics Processing Units have been at the core of a paradigm shift in computer vision research that some researchers have called “the algorithmic perception revolution.” This thesis presents the implementation and analysis of several techniques for performing artistic style transfer using a Convolutional Neural Network architecture trained for large-scale imag...
متن کاملImage ality Assessment Guided Deep Neural Networks Training
For many computer vision problems, the deep neural networks are trained and validated based on the assumption that the input images are pristine (i.e., artifact-free). However, digital images are subject to a wide range of distortions in real application scenarios, while the practical issues regarding image quality in high level visual information understanding have been largely ignored. In thi...
متن کاملFeature-Guided Black-Box Safety Testing of Deep Neural Networks
Despite the improved accuracy of deep neural networks, the discovery of adversarial examples has raised serious safety concerns. Most existing approaches for crafting adversarial examples necessitate some knowledge (architecture, parameters, etc) of the network at hand. In this paper, we focus on image classifiers and propose a feature-guided black-box approach to test the safety of deep neural...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RSC Advances
سال: 2019
ISSN: 2046-2069
DOI: 10.1039/c8ra10182e